
VOLUME 86, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 12 FEBRUARY 2001
Shear Viscosity of Strongly Coupled Yukawa Systems on Finite Length Scales
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The Yukawa shear viscosity has been calculated using nonequilibrium molecular dynamics. Near the
viscosity minimum, we find exponential decay consistent with the Navier-Stokes equation, with sig-
nificant deviations on finite length scales for larger viscosity values. The viscosity is determined to be
nonlocal on a scale length consistent with the correlation length, revealing the length scales necessary for
obtaining transport coefficients in the hydrodynamic limit by nonequilibrium molecular dynamics meth-
ods. Our results are quasiuniversal with respect to excess entropy for excess entropies well below unity.
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A broad variety of systems, including dusty plasmas,
inertial confinement fusion dense plasmas, brown dwarfs,
giant planets, white dwarfs, and neutron stars, may be
modeled as strongly coupled Coulomb systems. Often
one is concerned with the dynamics of the heaviest
species —whether it be dust grains or ions —which
are screened by the lighter particles. A general uni-
fying model for all of these systems is the Yukawa
model, whose interparticle pair potential is of the form
uY �r��T � G exp�2kr�a���r�a�, where G � Q2��aT �
and k � a�lD , defined in terms of the charge Q, tem-
perature T , half the interparticle spacing a, and screening
length lD . In fact, recent measurements [1] have shown
the intergrain potential in dusty plasmas to be closely of
the Yukawa form. Dense �n . 1020 cm23� plasmas can
be modeled as Yukawa systems [2], which in turn have
numerous astrophysical applications [3]. The Yukawa
system will likely emerge as a useful model for the
recently produced ultracold neutral plasmas [4].

The shear viscosity is a dynamic property essential for
predicting collective mode properties of strongly coupled
plasmas, an issue at the forefront of the rapidly evolv-
ing field of dusty plasma physics [5,6]. The viscosity is
also important for determining Rayleigh-Taylor instabil-
ity growth rates in inertial confinement fusion targets [7]
and, in general, the damping of waves in dense plasmas
[8]. In some cases, such as dusty plasmas and ultracold
plasmas, viscous damping competes with damping due to
background neutrals. However, typical dusty plasma ex-
periments can probe regimes where the shear viscosity
dominates.

The viscosity of the one-component plasma (OCP), i.e.,
the k � 0 case of the Yukawa model, has been known for
over two decades [9]. The dependence of the viscosity on
G was shown for the OCP in the seminal paper by Vieille-
fosse and Hansen [9] and later confirmed [10,11]. Despite
the wide applicability of the Yukawa model, the effect
of finite k is unknown. Approximate methods based on
excess entropy appear promising for providing estimates
[12–14]. Moreover, little is known about the viscosity on
finite length scales, where the viscosity is nonlocal, for ei-
ther the OCP or Yukawa models [6,15].
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Because of the difficulties with long time tails of the
current autocorrelation function in equilibrium calculations
of the shear viscosity [9], several nonequilibrium molec-
ular dynamics (NEMD) techniques have been devised for
hard sphere and Lennard-Jones systems which prove much
faster than equilibrium methods [16]. We employ the
NEMD method introduced previously by Donko and Nyiri
for the OCP [11], which is a method well suited to study
finite length effects. We performed parallel NEMD sim-
ulations by imposing a sinusoidal shear velocity profile
and measuring the decay time. We implemented mini-
mum image molecular dynamics in parallel on an 8 CPU
LINUX cluster using a simple replicated data paralleliza-
tion scheme. The system was equilibrated for 10 100tac
(the autocorrelation time tac is defined by the e-folding
time of the velocity autocorrelation function) using veloc-
ity scaling. The time step was chosen to ensure energy
conservation within 5% in the absence of velocity scaling.
The scale length of the shear profile was varied by using
N � 3200, 6400, 12 800, and 25 600 particles. With the
box size L � 23.75a, the force for k � 1 on a particle
due another particle one box length away was smaller by
�1025 compared with neighboring particles, justifying our
neglecting Ewald sums. This was verified by performing a
simulation for k � 1 and G � 1000 including the forces
due to 26 neighboring image simulation boxes. After equi-
libration, a sinusoidal velocity profile was applied and the
velocity scaling was turned off. At t � 0, the transverse
velocity profile has the form

vi�0� � yz�0� sin�qxi�ẑ 1 vi,therm , (1)

where vi,therm is the initial random thermal velocity of
particle i and xi its x coordinate. The velocity profile am-
plitude yz�t� of the system was obtained by a least squares
fit of the simulation velocity profile to yz�t� sin�qx�. The
decay time ts was then obtained by a least squares fit
of yz�t� to yz�t� � yz�0� exp�2t�ts�q�� between t �
2tac and e-folding time t � tmax, where yz�tmax� �
yz�2tac��e. This eliminated any short time correlations
and ensured a long enough simulation time to obtain
the exponential decay constant. The exponential decay
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profile is the solution to the transverse part of the linear
Navier-Stokes equation:

≠yz�r, t�
≠t

�
1

Mn

Z
d3r 0 h�r 2 r0�=2yz�r0, t� , (2)

for the initial condition (1). Nonlocality has been al-
lowed for by introducing a convolution over the nonlocal
viscosity h�r 2 r0�. Here ts�q� � nM�q2h�q�, where
q � 2p�L. By varying the simulation size L the viscosity
was obtained for various wave vectors. The initial velocity
amplitude was yz�0� � 0.86yth, where yth � �T�M�1�2,
corresponding to the perturbation dT�T � 0.12.

The viscosity was computed over the range 2 , G ,

1000 and 1 , k , 4. Our most accurate simulation
results are displayed in Table I. Figure 1 displays the
viscosity surface h��G, k� over the G-k plane, where
our simulation data (Table I) have been interpolated
to the surface using a minimum curvature surface and
h� � h��Mnvpa2�. The values of h at k � 0 and
G � 2, 5, 10, 100 are taken from Donko and Nyiri [11]. In
Fig. 2 the viscosity is shown versus G for k � 0, 1, 2, 3, 4.
Shown in the inset in Fig. 2 is h� versus G for k � 1
based on the NEMD results, the CP method of Murillo
(CP1), and a new CP (CP2) method. The new CP method
uses the excess entropy scaling of the viscosity [13,14],
where the Yukawa excess entropy has been estimated from
the known OCP excess entropy and the OCP-Yukawa
correspondence [12].

Screening lowers the minimum in the viscosity from
h� � 0.09 at k � 0 to h� , 0.02 for k � 3 and h� ,

0.01 for k � 4 (Fig. 1). This significant decrease in the
minimum is in direct contradiction with the CP estimates
that predict the minimum viscosity of all Yukawa systems
to be equal to the OCP minimum [12]. Screening also
shifts the minimum viscosity, causing it to appear at larger
G as k is increased.

Figure 3 displays the reduced viscosity h1 �
h�

p
3G �3�4p�1�3 versus excess entropy s, where s �

2S�NkB, and S is the actual excess entropy, N is the
number of particles, and kB is the Boltzmann constant.
The excess entropy was computed using the molecular
dynamics results of Hamaguchi et al. [17]. Rosenfeld
has shown that transport coefficients are quasiuniversal
on such a plot for excess entropies above s � 1 [13].
We have found the surprising result that quasiuniversality
holds well below unity over the range 1 , k , 4. Also

TABLE I. Yukawa shear viscosity. * denotes simulations per-
formed with N � 25 600. All other values used N � 3200.

G k � 1 2 3 4

2 0.2340* 0.2646 0.4760* 0.5496*
5 0.0829* 0.0829* 0.1549 0.1633

10 0.0526* 0.0521 0.0693 0.0870
100 0.0568* 0.0224 0.0170 0.0142

1000 0.2191 0.1541 0.0351 0.0106
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shown are the OCP results of Vieillefosse and Hansen [9],
Wallenborn and Baus [10], and Donko and Nyiri [11].

Figure 4 demonstrates that the viscosity is sometimes
monotonic �G � 100, 1000� and sometimes not mono-
tonic �G � 2, 5, 10� in k for 0 , k , 4 depending on the
strength of G. For G � 2, curves for both N � 3200 and
N � 25 600 are shown. For G � 100, the viscosity falls
off with k due to decreasing strong coupling correlation
length rcorr (the length over which the radial distribution
function’s successive maxima fall off by 1�e beginning
with the second maximum). The viscosity shows a
minimum for G � 10 where the apparently large value
of the mean free path lmfp determines the viscosity for
k � 2 4.

The Navier-Stokes equation breaks down in regimes of
extreme weak coupling �G � 2� and regimes of extreme
strong coupling �G � 1000�. The breakdown results from
the large lmfp for G � 2 and the large rcorr at G � 1000
causing large errors in h (Fig. 4). The error bars in Fig. 4
were determined by the dispersion in viscosity resulting
from starting the exponential fit of the yz�t� decay curve
(Fig. 5) at t � 1, 2, 3, 4, 5tac. This error was larger
than fluctuations due to different initial conditions (only
error bars larger than 5% are shown). Nonexponential
decay is demonstrated in Fig. 5(a) �G � 2, N � 3200�
for the case of k � 4. A curve of similar nonexponential
shape was also observed for k � 3. We attribute the
nonexponential decay to a transition to the Knudsen
gas regime for which the Knudsen number K , de-
fined as K � lmfp�L, exceeds unity (violating the
condition of validity for the Navier-Stokes equation which
requires lmfp ø L). This was verified by decreasing the
box length from L � 23.75a to L � 11.88a for k � 1, 2,
where we find that the decay changes from exponential
to nonexponential (similar to the nonexponential shape
observed for k � 3, 4 and L � 23.75a) suggesting

FIG. 1. The Yukawa shear viscosity surface h��G, k� for the
values in Table I.
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FIG. 2. The NEMD shear viscosity versus coupling parame-
ter G for screening parameters k � 1, 2, 3, 4 for the values in
Table I. The k � 0 case is taken from Donko and Nyiri. The
inset compares NEMD and CP (described in text).

that we have located a transition to the regime where
L � lmfp. This effect was also confirmed for k � 3, 4,
where exponential decays were observed for large systems
with N � 25 600 and L � 47.51a. These points with
N � 25 600 are shown in Fig. 4, demonstrating that the
decrease in h with respect to k for k . 2 and N � 3200
is due to the transition to the Knudsen gas. This indicates
the minimum length scale for which the Navier-Stokes
equation is applicable.

The opposite extreme �G � 1000, k � 1, 2� is near the
crystallization boundary [17], where viscoelastic behavior
is expected to emerge. Furthermore, correlations in the
radial distribution function g�r� are observed out to r �
10a � L�2, making the validity of (2), which requires
rcorr ø L, marginal. We therefore used the viscoelastic
generalization of (2),

FIG. 3. Reduced viscosity versus excess entropy for k �
1, 2, 3, 4. Also shown are the OCP results of Vieillefosse and
Hansen (V-H), Wallenborn and Baus (W-B), and Donko and
Nyiri (D-N). The high density fit h1 � 0.2e0.8s of Rosenfeld
(R-HD) is also shown.
FIG. 4. The viscosity h��k� for G � 2, 5, 10, 100, 1000 for the
most accurate values in Table I with the exception of G � 2.
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whose solution is of the form

yz�t� � yz�0�e2t��2t�
∑
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1
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,

(4)

where v0 � �q2h�tMn 2 1�4t2�1�2. Based on simu-
lation results at short times, the initial condition was
taken to have dyz�0��dt � 0. As shown in Fig. 5(b), the
viscoelastic solution (lighter dashed curve) is a significant
improvement over the Navier-Stokes solution, giving t �
44.55v21

p , v0 � 0.0123vp , and h� � 0.177, approxi-
mately 15% higher than the Navier-Stokes value with
significantly smaller error. For G � 1000, k � 3, 4, the
decay is closer to exponential, consistent with the shorter
correlation lengths rcorr � 5a observed in our simulations.

FIG. 5. (a) The velocity profile decay amplitude for weak
�k � 1� and strong �k � 4� screening at G � 2. Note the de-
viations from exponential decay. (b) The velocity profile decay
amplitude for weak �k � 2� and strong �k � 4� screening at
G � 1000.
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FIG. 6. Wave number dependence of the viscosity h��q� for
G � 100, k � 1. The knee at qa � 0.3 is due to the increase in
rcorr�L with q. For this case the hydrodynamic limit is obtained
for N � 6400 particles and qa � 0.21.

The Navier-Stokes equation breaks down for smaller
box sizes, i.e., larger q and smaller N , due to lmfp � L
(weakly coupled) or rcorr � L (strongly coupled). This
breakdown suggests nonlocal effects are important in de-
termining the viscosity on these length scales. We have
explored this phenomenon with simulations for the case
G � 100 and k � 1 for various numbers of particles from
N � 3200 to N � 25 600, as well as various values of n
for q � 2pn�L. Figure 6 demonstrates that the viscosity
is fairly constant for small q and decreases towards short
wavelengths with the knee occurring near q � 0.3. This
corresponds to a length scale where hydrodynamic gen-
eralizations are expected since L � rcorr. We conjecture
that this could be measured in a dusty plasma since the
scale lengths ��mm� are macroscopic. We do not expect
h to change substantially for lower q (i.e., N ¿ 25 600)
since L ¿ rcorr for N � 25 600; that is, the simulation
with N � 25 600 is in the hydrodynamic limit. This could
be tested by performing simulations with N ¿ 25 600 us-
ing the particle-particle/particle-mesh technique [18]. It is
noted that standard particle-in-cell methods are impracti-
cal because accurate determination of viscosity requires
accurate treatment of short-range interactions (i.e., ø1
particle per cell) where the simulation time is limited by
the three-dimensional grid size rather than the number of
particles [19]. We expect the viscosity to be slightly un-
derestimated for values of k and G where results were ob-
tained only for N � 3200.

We have found that the decay of the velocity profile
deviates from the usual Navier-Stokes exponential decay
when the scale length becomes less than either the mean
free path or the correlation length. Increasing the length
scale (wavelength) under fixed conditions recovered the
exponential decay and, therefore, the hydrodynamic limit.
Under conditions of weak coupling we interpret the nonex-
ponential decay as a transition to the Knudsen gas regime
and, for strong coupling, as a transition to a strongly
1218
coupled liquid with nonlocal viscosity. Near the viscosity
minimum for k � 1 we have shown that the viscosity is
scale-length dependent over a distance of approximately
one correlation length. Near the phase boundary we have
found that the decay resembles the solution to the vis-
coelastic generalization of the Navier-Stokes. For the
longest wavelengths in our simulations we have fit the ex-
ponential decay to the solution of the Navier-Stokes so-
lution and have obtained the shear viscosity. Our results
indicate that the Yukawa shear viscosity is quasiuniversal
with respect to excess entropy, even below s � 1 where
the plasma is only moderately coupled and caging is not
very strong.
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